Connectedness at Infinity of Complete Kähler Manifolds and Locally Symmetric Spaces

نویسندگان

  • Peter Li
  • JIAPING WANG
چکیده

Abstract. One of the main purposes of this paper is to prove that on a complete Kähler manifold of dimension m, if the holomorphic bisectional curvature is bounded from below by -1 and the minimum spectrum λ1(M) ≥ m, then it must either be connected at infinity or diffeomorphic to R × N , where N is a compact quotient of the Heisenberg group. Similar type results are also proven for irreducible, locally symmetric spaces of noncompact type. Generalizations to complete Kähler manifolds satisfying a weighted Poincaré inequality are also being considered

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hermitian-einstein Metrics for Vector Bundles on Complete Kähler Manifolds

In this paper, we prove the existence of Hermitian-Einstein metrics for holomorphic vector bundles on a class of complete Kähler manifolds which include Hermitian symmetric spaces of noncompact type without Euclidean factor, strictly pseudoconvex domains with Bergman metrics and the universal cover of Gromov hyperbolic manifolds etc. We also solve the Dirichlet problem at infinity for the Hermi...

متن کامل

Connectedness at Infinity of Complete Kähler Manifolds

One of the main purposes of this paper is to prove that on a complete Kähler manifold of dimension m, if the holomorphic bisectional curvature is bounded from below by -1 and the minimum spectrum λ1(M) ≥ m2, then it must either be connected at infinity or isometric to R×N with a specialized metric, with N being compact. Generalizations to complete Kähler manifolds satisfying a weighted Poincaré...

متن کامل

Commutative curvature operators over four-dimensional generalized symmetric spaces

Commutative properties of four-dimensional generalized symmetric pseudo-Riemannian manifolds were considered. Specially, in this paper, we studied Skew-Tsankov and Jacobi-Tsankov conditions in 4-dimensional pseudo-Riemannian generalized symmetric manifolds.

متن کامل

Uniform connectedness and uniform local connectedness for lattice-valued uniform convergence spaces

We apply Preuss' concept of $mbbe$-connectedness to the categories of lattice-valued uniform convergence spaces and of lattice-valued uniform spaces. A space is uniformly $mbbe$-connected if the only uniformly continuous mappings from the space to a space in the class $mbbe$ are the constant mappings. We develop the basic theory for $mbbe$-connected sets, including the product theorem. Furtherm...

متن کامل

On a class of paracontact Riemannian manifold

We classify the paracontact Riemannian manifolds that their Riemannian curvature satisfies in the certain condition and we show that this classification is hold for the special cases semi-symmetric and locally symmetric spaces. Finally we study paracontact Riemannian manifolds satisfying R(X, ξ).S = 0, where S is the Ricci tensor.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008